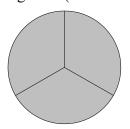

Figure A (Use for 1–5)

- 1. How many parts are there in this circle?
- 2. How many parts of the circle are shaded?
- 3. What fractional part of the circle is shaded?
- 4. a. The numerator of $\frac{3}{8}$ is _____.
 - b. It tells the number of parts that______.
 - c. The denominator of $\frac{3}{8}$ is ______.
 - d. It tells the number of parts that
- 5. a. Is the whole circle shaded? _____.

 b. Less than one circle is shaded, so $\frac{3}{8}$ is less than _____.
 - c. The name for a <u>fraction</u> that is <u>less than 1</u> is a _____

Figure B (Use for 6–15)

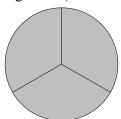
- 6. How many parts make **one** circle in Figure B?
- 7. How many of these parts are shaded in both circles together?
- 8. The______of the fraction will tell how many parts make one. (Here, it is one circle.)
- 9. The of the fraction will tell how many parts are shaded.
- 10. Write the **fraction** that describes the shaded portion of the circles in Figure B.
- 11. Circle the best description of the shaded portion in Figure B.

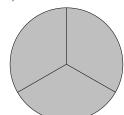

less than one circle one circle

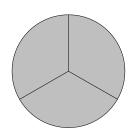
more than one circle

- 12. What kind of fraction is $\frac{7}{2}$?
- 13. How many circles are completely shaded?

- 14. What part of the other circle is shaded?
- 15. Write the shaded portion of Figure B as a mixed number.


Figure C (Use for 16–19)




- 16. How many parts are shaded in Figure C?
- 17. How many parts make one circle?
- 18. Write the **fraction** that describes the shaded part.
- 19. The value of $\frac{3}{3}$ is _____.

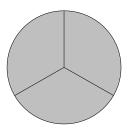

(Isn't that the number of completely shaded circles?)

Figure D (Use for 20–25)

- 20. How many parts are in **one** circle in Figure D?
- 21. How many parts are shaded in <u>all</u> of Figure D?
- 22. Write the **fraction** that shows the portion of Figure D that is shaded.
- 23. How many completely shaded circles are in Figure D?
- 24. What is the value of $\frac{12}{3}$?
- 25. a. How can you find the value of $\frac{18}{3}$?
 - b. Draw circles to represent $\frac{18}{3}$. HINT: 18 shaded parts; 3 parts in each circle

26. Draw circles to represent $\frac{13}{5}$.

THINK:

- a. How many parts make one circle?
- b. How many parts are shaded?
- c. How many circles are completely shaded?
- d. What part of the other circle is shaded?
- e. Write the shaded part as a mixed number.
- 27. a. Divide 13 by 5. What is the quotient?
 - b. What is the remainder?
 - c. What was the divisor?
 - d. Using the words quotient, remainder, divisor, numerator and denominator, describe how to write the value of an improper fraction as a mixed number.
- 28. Write each fraction as a whole number or as a mixed number. If it is a proper fraction write "This value is less than one." b. $\frac{27}{9}$ c. $\frac{47}{15}$ d. $\frac{15}{47}$ e. $\frac{12}{12}$

- a. Draw $4\frac{2}{3}$ shaded circles: 29.
 - b. Find the circle that is not completely shaded. How many parts make that whole circle?
 - c. Take the 4 completely shaded circles and divide each one into the same number of parts as the remaining circle (3 parts in each circle)
 - d. Now how many parts are shaded?
 - e. How many parts make any one of the circles?
 - f. What improper fraction describes the portion of the circles that is shaded?
 - g. Write $4\frac{2}{3}$ as a fraction.

h. Explain what you did and why it works.

30. Write each mixed number as a fraction.

a.
$$7\frac{1}{2}$$
 b. $2\frac{3}{4}$ c. $9\frac{5}{8}$ d. $1\frac{3}{4}$

b.
$$2\frac{3}{4}$$

d.
$$1\frac{3}{4}$$

ANSWERS:

b.
$$\frac{3}{8}$$
 is less than 1

10.
$$\frac{7}{4}$$

14.
$$\frac{3}{4}$$

15.
$$1\frac{3}{4}$$

22.
$$\frac{12}{3}$$

17. 3

18. $\frac{3}{3}$

19. 1

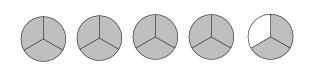
20. 3

21. 12

25. a. divide
$$3)18$$

26.

a. 5 b. 13 c. 2 d.
$$\frac{3}{5}$$
 e. $2\frac{3}{5}$


- d. To write the value of an improper fraction as a mixed number:
 - 1. divide the numerator by the denominator
 - 2. the quotient is the whole number
 - 3. the fraction's numerator is the remainder and the divisor is the denominator.

28. a. $1\frac{7}{8}$ b. 3 c. $3\frac{2}{15}$ d. This value is less than one

e.1

29.


NOTICE that the mixed number $4\frac{2}{3}$

means
$$4 + \frac{2}{3}$$

b. 3

4 circles \times 3 parts in each = 12 parts. Compare this with 29a.

d.

12 shaded parts + 2 shaded parts = 14 shaded parts

e. 3

f. $\frac{14}{3}$ g. $\frac{14}{3}$

h. $4\frac{2}{3}$

1. Multiply the whole number × the denominator

 $4 \times 3 = 12$ (This tells the number of parts shaded in the completely shaded circles.)

- 2. Add the numerator: 12 + 2 = 14. (This tells how many shaded parts there are altogether. This is the fraction's numerator)
- 3. The denominator must tell the number of parts that are in one circle, so it remains the same (3 here)!

The result is $\frac{14}{3}$ 30. a. $\frac{15}{2}$ b. $\frac{11}{4}$ c. $\frac{77}{8}$ d. $\frac{7}{4}$

EXTRA: Can you tell, without actually dividing, which fractions will be mixed numbers, which will be whole numbers and which will remain as a fraction?

A. $\frac{30}{7}$ B. $\frac{30}{6}$ C. $\frac{7}{30}$ D. $\frac{7}{7}$

ANSWERS: A. Mixed number

B. Whole number

C. Fraction

D. Whole number

- 1. If numerator is less than denominator, the fraction's value is less than 1.
- 2. If numerator = denominator, the fraction = 1.
- 3. If numerator is greater than denominator, the value is greater than 1. (It will be a whole number if the denominator is a factor or divisor of the numerator; otherwise, it will be a mixed number.)